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SUMMARY

This paper outlines the development of a two-phase flow model based on the theory of thermodynamically
compatible systems of hyperbolic conservation laws. The conservative hyperbolic governing equations
are numerically implemented in conjunction with the second-order MUSCL method and the GFORCE
flux, while for the reduced isentropic model the first-order Godunov method is also derived. Results are
presented for the water–air shock tube and water-faucet test problems. Copyright q 2007 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The development of accurate computational models for compressible multi-phase flows is of
interest in relation to a number of scientific and engineering disciplines. In the last few decades,
several models and associated numerical algorithms for two-phase flows have been developed
[1–3], but none of these models has been universally accepted as a complete formulation for
modelling two- and multi-phase flows.

Here, a new multi-phase modelling approach based on the thermodynamically compatible
systems of hyperbolic conservation laws [4–6] is outlined for the development of single temperature
two-phase flow model. The mixture with equal phase temperatures is considered as a continuum
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medium with the governing equations casted in hyperbolic conservation form. Owing to the
complexity of the governing equations, the solution of the Riemann problem cannot be easily
obtained. Therefore, a centred method for computing the numerical fluxes, called GFORCE, has
been employed [7]. The linearized Riemann solver has been derived for the reduced isentropic
model using eigenstructure analysis [8]. The two-phase flow model has been applied to water–air
shock tube [2] and water-faucet [2, 9] problems.

2. DEVELOPMENT OF CONSERVATIVE MODEL FOR TWO-PHASE FLOW

The compressible two-phase flow model presented here concerns different phase velocities and
pressures, and equal phase temperatures. The development of the model consists of several closely
inter-related steps:

• Introduction of new physical variables, in addition to the classical variables (velocity, density,
entropy), characterizing a two-phase flow.

• Formulation of new conservation laws for the new variables in addition to the classical mass,
momentum and energy conservation laws.

• Introduction of source terms for modelling phase interaction and dissipative processes.
• Formulation of closures for the mixture, such as equation of state, and dependencies of the
source terms on the state parameters.

2.1. Parameters of state for two-phase flow with equal phase temperatures

A two-phase model that represents a simplification of the general model for a flow with different
phase velocities, pressures and temperatures [6] is presented in this paper. A continuum two-phase
medium with phase volume concentrations �1 and �2 and the saturation constraint �1+�2=1 being
held is considered. The phases (denoted by the indices n=1,2) are characterized by the velocities
uin , i=1,2 and 3, for the three velocities, respectively, and densities �n . The phase temperatures
are assumed to be the same (T1=T2=T ), that is valid for processes with characteristic time much
greater than the time required for equilibration of phase temperatures. The model can then be
derived from [6] for relaxation time of phase temperatures difference tending to zero.

The above variables along with an equation of state for each phase, defining the dependence
of internal energy on its density and entropy en(�n,sn), provide a full description of two-phase
compressible flows. The total density of the mixture is defined as �=�1�1+�2�2. By introducing
a mixture entropy s=c1s1+c2s2, where cn =�n�n/� is the mass concentration of nth phase,
additional flow parameters, such as phase entropies sn , pressures pn , etc., can be defined. The
phase entropies sn =sn(�1,�1,�2,s),n=1,2, can be calculated as functions of volume fraction
�1, phase densities �1,�2, and mixture entropy s by solving the system:

c1s1+c2s2=s,
�en(�n,sn)

�sn
=Tn =T, n=1,2

Further we consider the one-dimensional flow along the x-axis with the basic set of parameters
of state for the governing equations �1,�1,�2,u1,u2,s, and any other parameter of state can be
obtained by these ones.
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2.2. Thermodynamically compatible system of conservation laws and derivation of two-phase
flow equations

A general thermodynamically compatible system of conservation laws is fully defined by a poten-
tial L depending on variables qk , which can be scalars, vectors or tensors. All conserved variables
are identical to �L/�qk , and the fluxes are expressed via qk and �L/�qk . The convexity of L
provides the hyperbolicity of the resulting system. Details of the transformation of the system to
symmetric form as well as derivation of energy conservation law for compatibility of the governing
equations can be found in [5]. Once the subsystem of the general thermodynamically compatible
system for modelling two-phase flows has been selected, the governing equations can be obtained
by identifying the physical and generating variables. A set of physical conserved variables is given
by the derivatives �L/�qi . The constitutive relation, which is necessary for closing the system, is
the equation of state for the mixture. It is obtained by the sum of averaged phase equations of state
and kinetic energy of the phase relative motion: E(�1,�1,�2,s,w)=c1e1(�1,s1)+c2e2(�2,s2)+
c1c2(u1−u2)2/2, where sn =sn(�1,�1,�2,s) is the entropy of nth phase. The source terms intro-
duced in the governing equations concern the modelling of pressure relaxation for reaching the
equilibrium state with equal phase pressures and interfacial friction (drag). The above are defined
according to the second law of thermodynamics, namely providing positiveness of entropy produc-
tion. The final system is expressed in conservation form in terms of the parameters of state:

���1
�t

+ �u��1
�x

=−�(p2− p1)
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where p1=�21�e1/��1, p2=�22�e2/��2, T =�e1/�s1=�e2/�s2, and the coefficients � and � char-
acterize the rate of pressure relaxation and velocity relaxation (drag force). The equations of the
above system represent balance laws for volume fraction, mixture total momentum, phase mass,
relative velocity and mixture total energy. All the above equations are known in the two-phase
flow theory except the equation for the relative velocity u1−u2. The latter is obtained by using
the thermodynamically compatible systems theory. In fact, the classical thermodynamics uses the
equality of phase chemical potentials e1+ p1/�1−s1T1=e2+ p2/�2−s2T2 as a condition for phase
thermodynamic equilibrium in reactive media. Similarly, a kinematic equilibrium for zero gradient
of phase chemical potentials difference is provided by the relative velocity balance law.
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System (1) is solved by the MUSCL scheme in conjunction with the GFORCE (Generalized
FORCE) method [7], theminmod limiter and the third-order TVD Runge–Kutta scheme for the time
integration [10, 11]. For the water-faucet problem, a reduced isentropic model has been considered,
which is solved also by a first-order Godunov method.

3. NUMERICAL TESTS

3.1. Water–air shock tube problem

The first test case is the one-dimensional water–air shock tube problem [2, 12] consisting of a
moving interface between water and air. In the numerical framework, the initial condition consists
of a small amount of air added to the water and vice versa because the governing equations are
de-generated for volume fractions of 0 or 1 for each phase, respectively. Both the pressure and
relative velocity relaxation are assumed to be instantaneous (�=∞,�=∞). Note that the numerical
realization of instantaneous relaxations consists of two steps. First, Equations (1) are solved by
the numerical method mentioned in the previous section, assuming zero source terms. Second,
a solution correction in each grid cell is applied by assuming u1=u2 and solving the algebraic
equation p1(m1/�1,s1)= p2(m2/�2,s2) with respect to �1 using computed phase entropies s1,s2
and known values m1=�1�1, m2=�2�2. The perfect and stiffened gas equations of state are
employed for air and water, respectively [2]. The computational domain is x ∈[0,1] (in metres), and
the domain consists of two sections [0,0.7) and (0.7,1] for air and water. Transmissive boundary
conditions are applied at x=0 and 1. The indices 1 and 2 are assigned to the variables for water
and air, respectively. The initial data for the left and right states are (�=10−7)

Left: �1=1.0−�,�2=�,u1=u2=0m/s, p1= p2=109 Pa,�1=103 kg/m3;
Right: �1=�,�2=1−�,u1=u2=0m/s, p1= p2=106 Pa,�2=50kg/m3.

Other parameters such as phase entropies, temperatures, air and water densities can be computed
using the corresponding equations of state. In this study, the initial data for temperature are different
than that of [2] because the single temperature model is employed. In Figure 1 the pressure, density,
velocity and volume fraction of the mixture are shown at t=2.2×10−4 s, for 200 (dashed line) and
800 grid points (thick solid line), and also compared with the exact solution (thin solid line). The
exact solution is obtained by solving the Riemann problem for the Euler equations. The results
reveal a very good agreement between the computational (800 grid points) and exact solution.

3.2. Water-faucet test problem

The water-faucet test problem is a classical test case in two-phase flow modelling [2, 9, 12]. An
isentropic simplification of (1), which can be obtained by neglecting phase entropies (s1=s2=0)
and assuming e1=e1(�1), e2=e2(�2), has been employed. The above approximations are valid
because the temperature variations are negligibly small at low Mach water-faucet flow. The flow
consists of a homogeneous water column in a gas annulus in a tube, which due to gravitational
acceleration results in the water column getting thinner. The gravity force must be taken into account
in the second (momentum) equation of (1) as the source term f =−�g, where g=9.81m/s2. The
tube has length 12m and the flow is initialized with p01 = p02 =105 Pa, water and air volume fractions
�01=0.8,�02=0.2, water and air velocities u01=10m/s and u02=0. The boundary conditions at the
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Figure 1. Mixture pressure (top left) and density (top right), velocity (bottom left) and air volume fraction
(bottom right) at t=2.2×10−4 s for 200 (dashed line) and 800 grid points (thick solid line), respectively,

and comparison with the exact solution (thin solid line).

tube inlet are air volume fraction �2=0.2, and water and air velocities u1=10m/s and u2=0. At
the tube outlet the pressure remains unchanged as p=105 Pa.

The analytical solution can be derived by neglecting pressure gradients [9]:

�2(t, x)=

⎧⎪⎪⎨
⎪⎪⎩
1− �01u

0
1√

(u01)
2+2gx

if x<
gt2

2
+u01t

1−�10 otherwise

Computations have been conducted by assuming instantaneous pressure relaxation, �=∞, and
ignoring the interfacial friction, i.e. �=0. Two numerical methods have been employed: the first-
order Godunov method in conjunction with a linearized Riemann solver and the second-order
MUSCL method in conjunction with the GFORCE flux and linear reconstruction. The linearized
Riemann solver has been derived using eigenstructure analysis [8]. The isentropic perfect gas and
stiffened gas equations of state have been employed for air and water, respectively. The mate-
rial constants are for air �2=1kg/m3,c2=374m/s,�2=1.4 and for water �1=1000kg/m3,c1=
1543m/s,�=2.8. Figure 2 shows the computed air volume fraction, �2, for the GFORCE method
and the first-order Godunov scheme at t=0.5s; the Courant–Friedrichs–Lewy number used in the
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Figure 2. Air volume fraction at t=0.5s for 200,400,800 and 1600 grid points, curves 1,2,3 and 4,
respectively. The results have been obtained using the GFORCE flux (left) and linearized Riemann solver

(right). The analytic solution is labelled as curve 5.

computations is 0.5. Both numerical schemes provide very similar results. The results labelled as
‘curve 5’ correspond to the exact solution, while curves 1–4 correspond to computations using
N =200,400,800 and 1600 grid points, respectively. Similar to previous studies [12], which used
the Baer–Nunziato-type model and different Riemann solvers, slow rates of convergence were also
observed in this study.

4. CONCLUDING OVERVIEW

A new model for two-phase flows based on hyperbolic conservation laws for non-equilibrium
thermodynamics is proposed. The model has been implemented in conjunction with two numerical
methods and applied to two test problems for which analytical solutions are available. Comparison
with the analytic solutions shows that the new model provides promising results. Future work will
concern extension of the model to complex two-phase flows compressible turbulent mixing and
instabilities such as Richtmyer–Meshkov and Rayleigh–Taylor.
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